首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
  国内免费   1篇
测绘学   7篇
大气科学   3篇
地球物理   6篇
地质学   26篇
海洋学   2篇
天文学   1篇
自然地理   10篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
  1980年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
Kamer  Krista  Fong  Peggy  Kennison  Rachel  Schiff  Kenneth 《Estuaries and Coasts》2004,27(2):201-208
We conducted a laboratory experiment to quantify nutrient (nitrogen and phosphorus) limitation of macroalgae collected along a gradient in water column nutrient availability in Upper Newport Bay estuary, a relatively nutrient-rich system in southern California, United States. We collectedEnteromorpha intestinalis and water for use in the experiment from five sites ranging from the lower end of the estuary to the head. Initial algal tissue N and P concentrations and molar N∶P ratios—as well as water column NO3 and total Kjeldahl nitrogen (TKN)—increased along a spatial gradient from the lower end toward the head. Water column soluble reactive phosphorus (SRP) varied among sites as well but did not follow a pattem of increasing from the seaward end toward the head. Algae from each site were assigned to one of four experimental treatments: control (C), nitrogen enrichment (+N), phosphorus enrichment (+P), and nitrogen and phosphorus enrichment (+N+P). Each week for 3 wk we replaced the water in each unit with the appropriate treatment water to mimic a poorly flushed estuary. After 3 wk, the degree of nutrient limitation ofE. intestinalis varied spatially with distance from the head of the estuary. Growth ofE. intestinalis collected from several sites increased with N enrichment alone and increased further when P was added in combination with N This indicated that N was limiting and that when N was sufficient, P became limiting. Sites from whichE. intestinalis exhibited nutrient limitation spanned the range of background water column NO3 (12.9±0.4 to 55.2±2.1 μM) and SRP (0.8±0.0 to 2.9±0.2 μM) concentrations. Algae that were N limited had initial tissue N levels ranging from 1.18±0.03 to 2.81±0.08% dry weight and molar N∶P ratios ranging from 16.75±0.39 to 26.40±1.98.  相似文献   
2.
The extraction of road networks from digital imagery is a fundamental image analysis operation. Common problems encountered in automated road extraction include high sensitivity to typical scene clutter in high-resolution imagery, and inefficiency to meaningfully exploit multispectral imagery (MSI). With a ground sample distance (GSD) of less than 2 m per pixel, roads can be broadly described as elongated regions. We propose an approach of elongated region-based analysis for 2D road extraction from high-resolution imagery, which is suitable for MSI, and is insensitive to conventional edge definition. A self-organising road map (SORM) algorithm is presented, inspired from a specialised variation of Kohonen's self-organising map (SOM) neural network algorithm. A spectrally classified high-resolution image is assumed to be the input for our analysis. Our approach proceeds by performing spatial cluster analysis as a mid-level processing technique. This allows us to improve tolerance to road clutter in high-resolution images, and to minimise the effect on road extraction of common classification errors. This approach is designed in consideration of the emerging trend towards high-resolution multispectral sensors. Preliminary results demonstrate robust road extraction ability due to the non-local approach, when presented with noisy input.  相似文献   
3.
Long-term changes in chlorophyll concentration were predicted from environmental variables using Box-Jenkins transfer function models for the Sacramento and San Joaquin rivers and Suisun Bay. Data used for the analyses were collected continuously on a semimonthly or monthly basis over the 17-yr period between 1971 and 1987. Groups of highly correlated environmental variables were summarized along three environmental axes using principal component analysis. The first environmental axis summarized river flow and specific conductance. The second environmental axis summarized water transparency and the third environmental axis summarized air and water temperature. Chlorophyll concentration was significantly corss-correlated with environmental axes and individual environmental variables. Transfer function models developed to describe changes in chlorophyll concentration over time were characterized by lag responses and described between 41% and 51% of the data variation. Significant cross-correlations between environmental axes and the California climate index (CA SLP) were used to develop a conceptual model of the link between regional climate and estuarine production.  相似文献   
4.
The behavior of As in the subsurface environment was examined along a transect of groundwater monitoring wells at a Superfund site, where enhanced reductive dechlorination (ERD) is being used for the remediation of groundwater contaminated with chlorinated solvents. The transect was installed parallel to the groundwater flow direction through the treatment area. The ERD technology involves the injection of organic C (OC) to stimulate in situ microbial dechlorination processes. A secondary effect of the ERD treatment at this site, however, is the mobilization of As, as well as Fe and Mn. The concentrations of these elements are low in groundwater collected upgradient of the ERD treatment area, indicating that, in the absence of the injected OC, the As that occurs naturally in the sediment is relatively immobile. Batch experiments conducted using sediments from the site inoculated with an Fe(III)- and As(V)-reducing bacterium and amended with lactate resulted in mobilization of As, Fe and Mn, suggesting that As mobilization in the field is due to microbial processes.  相似文献   
5.
The physical geography of the limestone islands of Palau permits permanent water-column stratification in 13 tropical sea-level marine lakes, each with unique water-column physics, chemistry, and biology. Embayments and lagoons amid the coral became isolated as marine lakes after Miocene uplifting. Surface mixing of lake water by wind is reduced by jungle-covered karst ridges. Surface tidal exchange through fissures in fenestrated karst is slow while midwater exchange through submarine tunnels is fast, but both produce damped, delayed tides with modest seawater exchange from the barrier-reef lagoon. Topographic protection from wind, heavy regular rain throughout the year, with precipitation exceeding evaporation, and modest tidal exchange produce stratified water columns with brackish waters above permanently anoxic saline hypolimnia. Permanent lake stratification is documented for 18 years; sediment cores (by others) show stratification for >100 years, and recent constant sea level implies ecosystem stability for thousands of years. Therefore, the marine lakes in Palau are small, closed, simple ecosystems that do not change over time–steady-state chemostats permitting replicate field measurements of biological and physical attributes from day to day, month to month, or decade to decade. [Key words: Palau, meromictic, marine lake, karst, lake stratification, tides, model ecosystem.]  相似文献   
6.
This study describes the biogeochemical cycling of seston in Grand Traverse Bay, Lake Michigan. Seston was characterized by carbon and nitrogen elemental and isotopic abundances. Fluorescence, temperature, light transmittance, and concentrations of dissolved inorganic nitrogen were also determined. PCBs were analyzed from surface (10 m) seston and ΣPCB was calculated by summing all of the congeners quantified in each sample. The vertical and seasonal trends in the δ13C values of seston exhibited a broad range from −30.7 to −23.9‰. Low δ13C values that occur concurrently with a peak in fluorescence below the thermocline reflect uptake of 13C depleted respiratory CO2 and/or the accumulation of 13C depleted lipids by phytoplankton. High δ13C values late in the season likely result from a reduction in photosynthetic fractionation associated with a decrease in the CO2 pool. Seasonal δ15N values of seston were high in the spring and declined through August. The δ15N values of seston reflect a balance between fractionation during assimilation of NH4+ or NO3 and degradative processes. The seston ΣPCB and fluorescence were both high in the spring and subsequently declined, suggesting that the concentrations of PCBs in seston were associated with labile material derived from primary productivity. The strong seasonal trends in the organic geochemical characteristics of seston and concentrations of PCBs emphasize the complex nature of particle cycling in aquatic environments.  相似文献   
7.
Strontium sorption to amorphous silica and goethite was measured as a function of pH and dissolved strontium and carbonate concentrations at 25°C. Strontium sorption gradually increases from 0 to 100% from pH 6 to 10 for both phases and requires multiple outer-sphere surface complexes to fit the data. All data are modeled using the triple layer model and the site-occupancy standard state; unless stated otherwise all strontium complexes are mononuclear. Strontium sorption to amorphous silica in the presence and absence of dissolved carbonate can be fit with tetradentate Sr2+ and SrOH+ complexes on the β-plane and a monodentate Sr2+complex on the diffuse plane to account for strontium sorption at low ionic strength. Strontium sorption to goethite in the absence of dissolved carbonate can be fit with monodentate and tetradentate SrOH+ complexes and a tetradentate binuclear Sr2+ species on the β-plane. The binuclear complex is needed to account for enhanced sorption at hgh strontium surface loadings. In the presence of dissolved carbonate additional monodentate Sr2+ and SrOH+ carbonate surface complexes on the β-plane are needed to fit strontium sorption to goethite. Modeling strontium sorption as outer-sphere complexes is consistent with quantitative analysis of extended X-ray absorption fine structure (EXAFS) on selected sorption samples that show a single first shell of oxygen atoms around strontium indicating hydrated surface complexes at the amorphous silica and goethite surfaces.  相似文献   
8.
Macroalgal bloom dynamics in a highly eutrophic southern California estuary   总被引:3,自引:0,他引:3  
A 16-mo long monitoring study was carried out in Upper Newport Bay estuary (UNB), Orange County, California, to quantify the macroalgal community of a southern California estuary. Quarterly sampling began December 1996 at 8 stations along the main channel and tidal creeks ranging from the head to the lower end of UNB. At each station, two strata (one at high and one at low elevation) were surveyed. Macroalgal species abundance (% cover and biomass) and algal tissue nitrogen (N) and phosphorus (P) were measured. The algal community changed from sparse macroalgal cover during winter 1996 to larger patches dominated byEnteromorpha intestinalis in spring 1997. The community was characterized by a thick cover of macroalgae comprised ofE. intestinalis andUlva expansa in summer 1997 andU. expansa andCeramium spp. in fall 1997. UNB returned to sparse macroalgal cover by spring 1998. In summer and fall 1997, biomass ofE. intestinalis andCeramium reached over 1,000 g wet wt m−2 each, andU. expansa biomass exceeded 700 g wet wt m−2. Tissue N was high inE. intestinalis andU. expansa collected from UNB (≈3% dry wt) and higher inCeramium (≈3.5% dry wt). Tissue P in all three algae ranged from 0.24–0.28% dry wt. Tissue N∶P (molar) ratios inE. intestinalis andU. expansa ranged from 16.4 to 30.0 and inCeramium from 21.8 to 40.1. A field experiment was conducted in whichE. intestinalis was used as a bioassay of N and P availability. Algal tissue was cultured under known conditions and samples were deployed throughout the estuary and left for 24 h. Tissue N of algae from these bags showed a nominal increase in N with proximity to the primary nutrient input to the system, San Diego Creek (p=0.0251; r2=0.200). Our data indicate that UNB is already a highly eutrophic estuary, but macroalgal blooms in UNB may increase if more N is added to the system.  相似文献   
9.
Quarterly field sampling was conducted to characterize variations in water column and sediment nutrients in a eutrophic southern California estuary with a history of frequent macroalgal blooms. Water column and sediment nutrient measures demonstrated that Upper Newport Bay (UNB) is a highly enriched estuary. High nitrate (NO3 ) loads from the river entered the estuary at all sampling times with a rainy season (winter) maximum estimated at 2,419 mol h−1. This resulted in water NO3 concentration in the estuary near the river mouth at least one order of magnitude above all other sampling locations during every seasons; maximum mean water NO3 concentration was 800 μM during springer 1997. Phosphorus (P)-loading was high year round (5.7–90.4 mol h−1) with no seasonal pattern. Sediment nitrogen (N)-content showed a seasonal pattern with a spring maximum declining through fall. sediment and water nutrients, as well as percent cover of three dominant macroalgae, varied between the main channel and tidal creeks. During all seasons, water column NO3 concentrations were higher in the main channel than in tidal creeks while tidal creeks had higher levels of sediment total Kjeldhal nitrogen (TKN) and P. During each of the four sampling periods, percent cover ofEntermorpha intestinalis andCeramium spp. was higher in tidal creeks than in the main channel, while percent cover ofUlva expansa was always higher in the main channel. Decreases in sediment N in both creek and channel habitats were concurrent with increases in macroalgal cover, possibly reflecting use of stored sediment TKN by macroalgae. Our data suggest a shift in primary nutrient sources for macroalgae in UNB from riverine input during winter and spring to recycling from sediments duirng summer and fall.  相似文献   
10.
Enteromorpha intestinalis is a bloom-forming species of macroalgae associated with eutrophication. The objective of this study was to investigate how this alga performs osmoregulation and nutrient uptake in order to proliferate under environmental conditions that covary with eutrophication. We quantified the response ofE. intestinalis to salinity, light, and nutrients. We performed two short-term (48 h) laboratory experiments (salinity alone and salinity × nutrients × light) to examine the algal responses of tissue water, potassium (K+), and nutrient (NO 3 and total N) content. Tissue water content decreased with increasing salinity, and although K+ concentration decreased from the initial concentration, it decreased less with increased salinity treatment demonstrating two mechanisms to withstand short-term salinity fluctuation. The salinity × nutrient × light experiment showed that, in the short term, light had an interaction with tissue K+. Total tissue N content was positively related to N treatment level, and light did not affect total nutrient concentration. The effect of light was present whether the nutrients were present in the tissue as inorganic or organic forms. With reduced light, we hypothe size that the assimilation of inorganic to organic N was energy limited. The ability of this alga to take up available nutrients rapidly for growth and short-term osmoregulation, even under low light and salinity levels, helps to explain the bloom potential ofE. intestinalis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号